Sunday, July 26, 2009

Math in Nature

Mathematics might seem an ugly and irrelevant subject at school, but it's ultimately the study of truth - and truth is beauty! You might be surprised to find that maths is in everything in nature from rabbits to seashells.

Infinity

Is one infinity bigger than another infinity? The size of all natural numbers, 1,2,3..., etc., is infinite. The set of all numbers between one and zero is also infinite - is one infinite set larger than the other? The deep questions of maths can leave you feeling very small in a vast universe.


Uniqueness, proofs

Proofs are the tools used to find the rules that define maths. One such proof is by counter example - find one duplicated snowflake, like Nancy Knight of the US National Center for Atmospheric Research did while studying cloud climatology, and the theory of snowflake uniqueness disappears into the clouds. The theory may have originated from Wilson Bentley's extraordinary feat photographing over 5000 snowflakes in the 1930s. He found no two alike.
Geometric sequence
Bacteria such as Shewanella oneidensis multiply by doubling their population in size after as little as 40 minutes. A geometric sequence such as this, where each number is double the previous number [or f(n+1) = 2 f(n)] produces a rapid increase in the population in a very short time.


Golden ratio (phi)
The ratio of consecutive numbers in the Fibonacci sequence approaches a number known as the golden ratio, or phi (=1.618033989...). The aesthetically appealing ratio is found in much human architecture and plant life. A Golden Spiral formed in a manner similar to the Fibonacci spiral can be found by tracing the seeds of a sunflower from the centre outwards.


Fibonacci spiral
If you construct a series of squares with lengths equal to the Fibonacci numbers (1,1,2,3,5, etc) and trace a line through the diagonals of each square, it forms a Fibonacci spiral. Many examples of the Fibonacci spiral can be seen in nature, including in the chambers of a nautilus shell.


Fibonacci sequence
Rabbits, rabbits, rabbits. Leonardo Fibonacci was a well-travelled Italian who introduced the concept of zero and the Hindu-Arabic numeral system to Europe in 1200AD. He also described the Fibonacci sequence of numbers using an idealised breeding population of rabbits. Each rabbit pair produces another pair every month, taking one month first to mature, and giving the sequence 0,1,1,2,3,5,8,13,... Each number in the sequence is the sum of the previous two.




Zero - Placeholder and Number
Zero is one of the most important mathematical concepts. The idea of zero as a placeholder, eg to distinguish 303 from 33, developed in both Indian and Babylonian cultures. Three Indian mathematicians, Brahmagupta (about 628 AD), Mahavira (about 850 AD) and Bháskara (1114- about 1185 AD), are credited with defining zero as a number, and defining the rules for subtracting, adding, multiplying and dividing by zero.




Fractals
Many natural objects, such as frost on the branches of a tree, show the relationship where similarity holds at smaller and smaller scales. This fractal nature mimics mathematical fractal shapes where form is repeated at every scale. Fractals, such as the famous Mandelbrot set, cannot be represented by classical geometry.


Pi
Any circle, even the disc of the Sun as viewed from Cappadoccia, central Turkey during the 2006 total eclipse, holds that perfect relationship where the circumference divided by the diameter equals pi. First devised (inaccurately) by the Egyptians and Babylonians, the infinite decimal places of pi (approximately 3.1415926...) have been calculated to billions of decimal places.


Geometry - Human induced
People impose their own geometry on the land, dividing a random environment into squares, rectangles and bisected rhomboids, and impinging on the natural diversity of the environment.



Parallel lines
In mathematics, parallel lines stretch to infinity, neither converging nor diverging. These parallel dunes in the Australian desert aren't perfect - the physical world rarely is.

Shapes - Cones
Volcanoes form cones, the steepness and height of which depends on the runniness (viscosity) of the lava. Fast, runny lava forms flatter cones; thick, viscous lava forms steep-sided cones. Cones are 3-dimensional solids whose volume can be calculated by 1/3 x area of base x height.



Shapes - Polyhedra
For a beehive, close packing is important to maximise the use of space. Hexagons fit most closely together without any gaps; so hexagonal wax cells are what bees create to store their eggs and larvae. Hexagons are six-sided polygons, closed, 2-dimensional, many-sided figures with straight edges.

Shapes - Perfect
Earth is the perfect shape for minimising the pull of gravity on its outer edges - a sphere (although centrifugal force from its spin actually makes it an oblate spheroid, flattened at top and bottom). Geometry is the branch of maths that describes such shapes.

Symmetry
Five axes of symmetry are traced on the petals of this flower, from each dark purple line on the petal to an imaginary line bisecting the angle between the opposing purple lines. The lines also trace the shape of a star.



HOPE THIS WILL HELP YOU BELIEVE THAT THERE IS BEAUTY IN MATHEMATICS..:)















































































































































































3 comments:

  1. nice! but i guess it will be a lot better if these pictures will be used in the classroom! go and show these to the students so that they will see the beauty in math through these pictures... hehe..

    ReplyDelete
  2. Math is really full of surprises.

    ReplyDelete